Availability of better data on communication networks can

undermine community enforcement

James D. Campbell*

Providence College

October 21, 2016

Abstract

| consider a repeated trust game played between a group of insiders, arranged in a network
representing their lines of communication, and a single outsider. Insiders follow a local punishment
rule, shunning the outsider if it has cheated them or a neighbor. The object of interest is that the
outsider may know either summary statistics about the nature of the network, or know its precise
non-anonymous structure. For the outsider to have knowledge of the precise structure may,
depending on the shape of the network, increase or decrease the volume of honest interaction
that can be sustained. In extreme cases, a small ‘local’ vulnerability to outside exploitation can
result in a total breakdown of the chance for mutually beneficial trade across the whole network.
Strategic ignorance and obfuscation of network structure may therefore be valuable to both sides,
complicating the problem for a network operator seeking to monetize data on the network graph.
| discuss recent decisions by Twitter and Facebook in this framework.
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1 Introduction

Consider a network of insiders who interact repeatedly with an outside entity in a trust game. The
outsider faces an immediate temptation to exploit the person with whom they are currently interacting,
but a long term incentive to maintain good relationships with insiders. Can the threat of punishment
by a person’s network neighbors give the outsider an incentive to ‘play nice’ that is strong enough to
sustain honest interaction?

A key consideration is how much information the outsider has on the structure of the network. The
outsider may have very precise information, able to see the exact structure of the network, including the
exact location and neighborhood of individual nodes. Alternatively, it may have only general information
about the network, perhaps knowing summary statistics about the level of connectivity, or knowing the
exact structure but not knowing which node occupies which position. | will focus here on how the
outsider values of these two general types of information about the network in the context of the
repeated interaction game.

My main finding is that more precise information about the network structure is not necessarily
more valuable to the outsider. The reason is that more information reveals to the outsider exactly
which nodes in the network are strongly protected by a large number of neighbors, and which nodes are
weakly protected by a small number of neighbors. Poorly protected nodes that may have been masked
by high average connectivity in the network are revealed to be vulnerable when the precise structure of
the network is revealed.

The volume of ‘honest’ interaction that can be sustained in the repeated interaction game may,
depending on the network’s structure, be increased or decreased by the outsider possessing more precise
information. Under the regime of the outsider having either the summary statistic or anonymized
information, either all nodes are vulnerable to exploitation or none are. In extreme cases, networks
in which no nodes were vulnerable under these regimes can have all honest interaction destroyed the
outsider obtaining precise network information. These cases are characterized (informally) by a lack
of redundant paths and a lack of cliques. The converse is not complete: networks in which all nodes
were vulnerable under the regimes with less information can have at best some, but not all, honest
interaction restored by the outsider obtaining precise network information.

The mechanism here is that local sparseness in a network can lead to global vulnerability. Consider



a network in which individuals have a high number of connections on average, but with wide variation
in the number of connections per node. Irredundancies—informally speaking, insiders with no or few
mutual friends—in one area of such a network can cause a recursive chain reaction of susceptibility to
exploitation that can ultimately result in no mutually beneficial interaction taking place. In the opposite
direction, local sub-networks that are well-connected among themselves can be salvaged as secure if
their area is revealed by precise network data to be more cyclically connected than the whole-network
average.

The general idea of this setup could apply to different types of interaction. A few examples:

Example 1: unverifiable service

In many buyer-seller relationships it is difficult for buyers to concretely verify the quality of the work
done or the good provided. The implied cost of bad word-of-mouth or negative online reviews may or
may not be enough to induce the seller to provide high quality service. If the seller possesses information
on the extent of the buyer’s influence, her incentives to provide high quality may now vary depending
on the identity of the buyer.

Example 2: equitable treatment

An organization provides customer service. If it has information on the position of individuals in
information-sharing networks, it may face a new incentive to neglect or prioritize users based on their
visibility to others, in order to promote the appearance of responsiveness. The operating rules for the
information-sharing network influence the extent to which the dialogue between the organization and a
user is transmitted to others.

Example 3: investigative journalism

Investigative consumer advocacy by local news teams is a classic example of the kind of incentives at
play in settings like these. Reluctant businesses are forced to confront complaints after being featured
on a news program with wide viewership, where localized ‘bad press’ from an individual was not enough.
This example raises the question of what real-world institutions may arise in response to the type of
problem we study here, and how effective they may be.

The idea of word-of-mouth as a punishment mechanism has been widely explored in the literature on
community enforcement in both many-to-many matching and one-to-many matching repeated games,

in which high quality trade is sustained by some strategy for consumers that takes into account previous



experience of others. For example, Klein and Leffler (1981) assumes that past play by the firm is public
knowledge. Kandori (1992) analyzes cases in which players are randomly matched in each stage and,
respectively, know only their own history or know some reputational ‘label’ attached to each player.
Similarly, Okuno-Fujiwara and Postlewaite (1995) allows the ‘status’ of an individual's matched player
to be common knowledge in the game. Ellison (1994) studies a similar random matching setting in
which players are anonymous and observe only the play in their own past games.

Jackson et al. (2012) also investigates social pressure and punishment in a network structure as
a means to sustain exchange. Their focus is on exchange structures that are renegotiation-proof due
to the protection of mutual friends of parties to a transaction. Their framework fits slightly different
applications to the one | will present here, since theirs considers interactions between members of the
network while | consider outsider-insider interactions. This means that the concepts of redundancy and
isolation in the network are slightly different, and it permits me to focus on the value of different types
of network data to the outsider.

Ali and Miller (2013) also considers bilateral interactions among insiders in a network. Players can
observe the history of play in their own relationships, but cannot observe how their matched partners have
played in other relationships. In common with the outcomes in this paper, networks featuring cliques
are found to be good for cooperation and payoffs. The diffusion of information is a key consideration in
their analysis, whereas | will assume skepticism from insiders so that they never engage in punishment
behavior unless and until the outsider cheats a direct neighbor.

Closest to the model | present below is Ahn and Suominen (2001). Their model has an intermediate
assumption on information transmission: a single seller transacts with many buyers in an infinitely
repeated game, in which one buyer is matched with the seller in each period and some subset of the
remaining buyers are selected to be ‘spectators’ to the transaction. Past play and reputations are neither
fully public or fully private, but instead information dissipates by successive observation by groups of
other players. Their model demonstrates that high quality trade can be supported in every period
for a suitably large buyer population, even when the probability of each buyer observing the seller's
choice in a given period is arbitrarily low. This result depends on the assumption that the spectators
to each transaction are randomly selected and not determined by the identity of the buyer. This is

qualitatively equivalent to the seller not knowing the identity or characteristics of each buyer. An



important addition that | make here is to consider selection of spectators according to a pre-existing
communication network.

In sum, | will focus here on an outsider-insiders structure, and the valuation and strategic implications
of the availability of public or tradeable data on the precise structure of networks. In particular | will
consider the strategic incentive of the outsider to acquire or ignore precise network data, the strategic
incentive of network operators to publicize precise network data, and the social value of precise network

data.

2 Repeated game between insiders and outsider

A set of ‘insiders’ interacts with a single outsider over an infinite horizon in discrete time. Denote
the number of these insiders by n. The insiders are arranged in a network capturing their lines of
communication with each other, in a fashion we will specify shortly. At each date, a single insider is
selected at random to interact with the outsider in a stage game. It follows that the probability of a
given insider being selected at some time is %

We may interpret the random selection mechanism as a ‘need’ for a product or service arising in the
population regularly but by chance, for example a car breaking down. Notice that we therefore do not
explicitly match to settings in which needs arise endogenously, and in particular to the setting in which
an insider’s propensity to engage the outsider depends on their prior knowledge, who their neighbors
are, or the history of the game. Similarly we do not deal with the case in which the outsider strategically
chooses who to visit when.!

The stage game played between insider and outsider has a strategy space and payoffs that are

described in the following matrix representation:

Insider
Engage Don't engage
Honest 1,1 0,0
Dishonest 1+g,-b 0,0

Outsider

1This gives rise to the possibility that the order of visitation could signal something to insiders, an idea discussed in,
for example, Campbell (2015).



The outsider discounts future payoffs at the § < 1, so that their total payoff is given by the discounted
sum of their stage payoffs, >, é'm,.

These payoffs are constructed to have two key features. First, the insider can effectively ‘shun’
the outsider by choosing not to engage the outsider, in which case both parties earn a payoff of zero.
Second, if engaged, the outsider faces a short-term temptation to behave dishonestly that we shall
contrast with their long-term incentives. There are two unspecified parameters. g > 0 is the ‘extra’
payoff to the outsider for dishonesty as compared to honesty in the one-shot game. b > 0 is the loss to
a swindled insider as compared to never having engaged the outsider in the first place. However, since
our analysis is qualitative, the relative magnitude of these parameters does not play a big role.

Dishonesty is a weakly dominant strategy for the outsider in the stage game. The unique Nash
equilibrium of the stage game has no interaction: the insider chooses not to engage, and the outsider
chooses dishonesty. The object of our interest is the possibility of subgame perfect Nash equilibria in
the repeated game in which all insiders—or, as we shall see, as many as possible—choose to engage
the outsider whenever they are selected, and are treated honestly by the outsider.

An insider’s neighbors are those other insiders who are precisely one degree away in the network. A
concept that will be important for our analysis is a neighborhood for some insider i, which we define as
the insider themselves plus their neighbors. Let us denote the number of insiders in the neighborhood
of ¢ by ;. Following naturally from this, we will denote the average neighborhood size in the network
of insiders by 7.

Assume that insiders use a local punishment rule that restricts them to the so-called ‘grim strategy’

in the case in which they are aware that a network neighbor was treated dishonestly in the past:
Definition 1. Local punishment rule: if in any prior period

() someone in an insider’s neighborhood was selected to play the stage game,
(ii) that person engaged the outsider, and
(iii) the outsider behaved dishonestly,

then the insider shall play ‘don’t engage’ whenever they are selected to play the stage game.

This rule has several noteworthy characteristics. First, it implies that either knowledge of deviations

does not travel beyond neighbors, or that insiders do not punish dishonest treatment of those who



are not their neighbors. Punishment behavior is not contagious (this contrasts with the focus of the
majority of the prior literature discussed earlier, which concerns the percolation of information and
inference through the network). Second, it is not necessarily sequentially rational, in the sense that
there is no consideration by the insider of any possible continuation game in which they may receive a
higher payoff by not following the local punishment rule. Our conception of punishment can therefore
be interpreted as both pro-social (or, if you prefer, altruistic) and also conservative in its treatment of
hearsay.

Oour local punishment rule, when combined with a strategy profile in which all insiders always choose
engage and the outsider always chooses to be honest, comprises the ‘unforgiving strategy profile’ in Ahn
and Suominen (2001). The question that we will focus on is: to what extent does the local punishment
rule insulate insiders against being treated dishonestly by the outsider?

We may briefly note that there are surely other modeling approaches that would capture similar
forces to the one at play here. One alternative, for example, could be to view network position as
reflecting one’s outside option in a bargaining situation, with implications for the disagreement payoff.
The outcome of a bargaining process may then change depending on whether this network data is

known to the counter-party.

2.1 Continuation payoffs and putting a bound on honest trade

The problem we analyze here is familiar from generic reputation games: cheat now versus future
cooperation. In checking whether strategies to form an equilibrium in this game, we must check the
outsider’s local continuation payoff in the event that they behave honestly against the one-shot game
from deviating. The ‘local’ here refers to the restriction on insiders’ strategies that from Definition 1:
the repercussions from dishonesty are felt only in the neighborhood of the victim.

As in all repeated games, the continuation payoff and individual strategies could in general be
heavily path dependent in an equilibrium. We are taking a typical approach to this problem by seeking
to describe an upper bound on the amount of honest interaction. In this we are assisted by the
observation that, by forward induction, in equilibrium no continuation payoff can include a payoff to the
outsider of more than 1 in any future period ¢t. That is, the outsider's strategy for the surrounding area

cannot include being honest now while ‘waiting’ to defect against another insider in the neighborhood,



since in equilibrium that subsequent insider will not buy. This means that the maximal local continuation
payoff to the firm is that associated with perpetually honest transactions with the selected insider and

all of their neighbors.

2.2 The outsider knows average connectivity

First consider a situation in which the outsider knows a summary statistic about the network: the
average number of neighbors across all insiders. A situation in which the outsider knows broadly similar
summary statistics, for example density, would be qualitatively similar to this one. So would a situation
in which the outsider knew the precise structure of the network but could not tell which insider was which
when they are matched in the stage game. The crucial point is that the outsider cannot meaningfully
distinguish insiders from each other when they are randomly selected to play the stage game.

In this situation the expected cost of dishonesty to the outsider is losing the possibility of any
positive payoff in the future in the neighborhood of the currently selected insider. The probability of
someone in that neighborhood being selected at a given future date is % the size of the neighborhood
relative to the total population.

An equilibrium in which all insiders engage and the outsider behaves honestly in each period exists
only if

1%5(2)>1+g (1)

5>1—<§>L (2)

n/ l+4+g

This is in precisely the same spirit as the result from Ahn and Suominen (2001), in which high quality
trade can be sustained indefinitely as long as there are a sufficiently large number of spectators per
transaction. Since the outsider is conditioning on the average neighborhood size here, there is no
distinction between spectators chosen at random each period, as in Ahn and Suominen (2001), or fixed
but unknown to the outsider, as in the present framework.

The intuition for this result is the well-known ‘shadow of the future' (Dal Bé, 2005). If the expected
loss from ‘cheating’ an insider today exceeds the one-shot gain from doing so, then if all insiders choose

to engage the outsider in each period, the outsider's best response is to cooperate throughout.



2.3 The outsider knows insiders’ position in the network

Next consider a situation in which the outsider has fully personalized data on the structure of the network
and can identify each insider by their position in it. The outsider can now condition their behavior on
the location of the matched insider selected to play the stage game, and different neighborhood sizes
mean different intensity of punishment under the local enforcement rule.

Denote by z; the size of the neighborhood of the insider with the smallest number of neighbors.
Since the discrepancies in continuation payoffs across neighborhoods are now known to the outsider,

we can observe that there exists an equilibrium with perpetual full engagement and honest trade if and

only if
ﬁ (%) S14g (3)
521 (%) ﬁ (4)

This is a ‘weakest link' argument. Given the local enforcement rule, it is not credible that the outsider
would choose to play honestly if engaged by the insider with neighborhood ;. Their social protection
is not sufficient to outweigh the outsider's one-shot gain from dishonesty. In a network with a non-
degenerate degree distribution, perpetual engagement and honest interaction requires a strictly more
patient outsider when the outsider has full information on the network position of each insider.

We can develop the reasoning from Section 2.1 to identify the full set of insiders who are vulnerable

in this sense. The maximal continuation payoff in the neighborhood of i is given by the discounted

Ly
n

stream of future payoffs of 1 in that neighborhood, 1%5 It is therefore unambiguously better for the

outsider to be dishonest with insider 7 if
1+g><%)1—5 (5)

This is just an inversion of condition 4 to identify insiders who will not engage the outsider in equilibrium,
since they will never be treated honestly.
But this is recursive. Consider the algorithm to construct a vulnerable set V of insiders from the

original network graph ¢:



1. Consider the insider j with the smallest neighborhood, x;.
2. Check condition 5. If it is not satisfied, end, else go to 3.
3. Put j in V. Update g to ¢ = g — j. Return to 1.

The resulting vulnerable set are those insiders who will never receive honest treatment from the outsider
in equilibrium.

A very simple example of recursive vulnerability is shown in Figure 1. The three connections of
the node at the center of the four-person star do not provide social protection if the neighbors are

themselves vulnerable.

Figure 1: Vulnerability can be recursive

If the threat of punishment in a neighborhood of size two cannot incentivize the outsider to be-
have honestly with the peripheral insiders, then we can prune the periphery from consideration in the
continuation game, leaving the central insider on an island with no meaningful social protection. This
recursion has a flavor of contagion arguments, but in the outsider-insiders framework the intuition is
not cutting off ties with someone who wronged you, but rather losing the protection of someone who
cannot help to protect you.

We may briefly mention a feature of the vulnerable set that flows from the assumptions of the local
enforcement rule. Let us say that a network has a vulnerable set composed of some insiders but not all.
At the margin of the vulnerable set—assuming that the network graph is connected overall—we will
have neighbors who straddle the boundary of the set. That is, one insider may not engage the outsider,
knowing that they will not receive honest treatment, while their neighbor does engage the outsider,

knowing that they will receive honest treatment.
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The interesting aspect here is that the local enforcement rule has prescribed that if the vulnerable
insider did ever engage—perhaps a ‘tremble’ or a misunderstanding—then the non-vulnerable insider
is bound to shun the outsider for the rest of time. This is the sense in which the local enforcement
rule is not sequentially rational. It therefore captures motivation outside the model, perhaps pro-social
incentives to maintain friendships by sacrificing payoffs to stick up for a friend.

Another way to say this is that the equilibrium with maximal honest engagement is built on pun-
ishment threats that never come to pass. Although it is outside the scope of this model, in a different
setting we may explore the implications of the insiders having to conjecture and ‘feel out’ the propensity

of the outsider to cheat, for example because they don't know the firm's level of time preference.

2.4 How network location data affects the vulnerable set

The outsiders's knowledge of the network structure can increase, decrease or leave unchanged the upper
bound on honest engagement in the repeated game. Which of these happens depending on the exact
structure of the network, and we may draw some general conclusions here. In this section we will stick to
the interpretation of ‘knowledge’ of the network as capturing whether the data available to the outsider
is anonymous with respect to the insider’s location or not.

We have already seen from equation 4 that it is not possible for the outsider's knowledge of non-
anonymous location data to admit a full honest engagement equilibrium if one did not exist without
that data. A simple case in which the outsider knowing the location of insiders in the network matters

is a three-node line (Figure 2).

O—0O0—=0

Figure 2: Three-node line

In the three-node line the average neighborhood size is is g but the smallest neighborhood is 2. The
anonymous data thus imposes more ‘discipline’ on the outsider. There is some level of patience such
that fully honest engagement can be perpetually sustained with anonymous data but not without.

This is an example that generalizes: the network structures least conducive to fully honest engage-

ment are trees. These structures are such that there is precisely one path between any two nodes in
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the network. For example, Figure 3 shows a single parent node with two children, each of which has
two children of its own, and so on. If a neighborhood of size 2 is not sufficient to protect an insider,
recursion will erode this tree entirely from bottom to top. In sum: if the structure of connections among
insiders is a tree, the vulnerable set is either empty or includes every insider in the network. Either all
are vulnerable, or none are. The same logic extends to tree segments of larger network structures. For
example, if the parent node of Figure 3 was a bridge between the pictured segment and the rest of a
larger network structure, then this segment would either be wholly contained in the vulnerable set or

wholly outside it.

Figure 3: Trees are the structure most fragile to recursive vulnerability

Conversely, cycles and cliques—which generate local redundancy in paths between two nodes—are

helpful. Figure 4 adds an edge to the four-person star.

Figure 4: Adding a cycle
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In the non-anonymous world, ‘mutual friends’ are helpful to an insider. When insiders have mutual
friends, the risk of a recursive vulnerability emerging in their neighborhood is reduced.

Notice too that there is an externality effect operating on an insider’s incentive to create or maintain
links. With anonymous data, an insider can ‘hide’ behind average connectivity in the network. Some of
the benefit to an individual of forming new connections or fostering mutual friendships is dispersed. By
contrast, with non-anonymous data, the insider’s individual connectivity is exposed. Their incentive to
form new connections or foster mutual friendships is therefore sharper, since the benefit flows to their
own protection.

It is not always the case, though, that non-anonymous data reduces the upper bound on honest

engagement.

Figure 5: Adding a cycle

The network in Figure 5 has an average neighborhood size of % This is the level of discipline on the
outsider from anonymous social protection. With non-anonymous data, however, the two peripheral
‘spokes’ are revealed to have neighborhoods of size 2, while each of the nodes in the completely
connected subgraph in the center have neighborhoods of size 4 in the event that the peripheral spokes
are removed. There is therefore some discount factor ¢ such that all are vulnerable in the anonymous
data case, but the central four nodes are not vulnerable in the non-anonymous data case.

The question at hand then becomes the minimum neighborhood size within subgraphs. The recursive
process of identifying the vulnerable set can be stopped by a firewall of connectivity among a subset of
insiders. In that sense, the problem of vulnerability here is a local one, but an inescapably collective one.
This is because while protection in the sense of this game does not require a network-wide, top-down
solution, but we have also seen that for an individual to increase their number of neighbors is not alone

enough to increase protection. Rather protection can be achieved piecemeal by actions to increase
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connectivity within a sufficiently populous neighborhood by forging mutual connections among a set of
insiders.

How many steps away an insider has to reach to forge those mutual connections depends on how
high the propensity to cheat is for the outsider. Is it enough to link friends with each other, or does the
insider have to work harder to link friends of friends? The answer depends on the strength of incentives
to cheat and cooperate in the stage game, and on the degree of patience by the outsider. These
parameters are potentially informed by the cultural and legal setting, as well as by inherent preferences.

A general implication of the analysis of this game is that the outsider may prefer to commit to
ignorance of the precise structure of relationship networks among insiders. By remaining in the dark,
it avoids the risk that it will be cursed by the knowledge of who is vulnerable and who is not, leading
to less honest engagement than before. Another way to say the same thing is that it is possible in this

game for the value of non-anonymous data on insider connections to be negative.

3 Network operators and examples

As of 2015, 78% of Fortune 500 have active Twitter accounts, and 74% have Facebook pages (Barnes
et al., 2016). No doubt there is a promotional aspect to this kind of activity, for example to spread
information about products (Campbell, 2012) or target launch promotions (Campbell, 2015).
However, there is evidence that there is a customer service motive at play too, such that companies
use Twitter to respond to public, visible complaints and concerns. In September 2016, TechCrunch
reported on new features launched by Twitter to deliver customer service functionality (Perez, 2016).
Interestingly, though, it is not clear whether the changes are designed to increase or decrease visibility
of complaints. On one hand, the new features include publicly visible ‘responsiveness’, to indicate
how quickly the company responds to customers. On the other hand, it admits new direct messaging
functionality that in principle nudges customers and companies to take their conversations out of the
public network and into private messaging. The tension here is suggestive of the type of conflicting

incentives present in our repeated game model: publicness is a mixed blessing.
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Q} 2 Kendall
=

Seriously @Comcast, why must my wireless signal go out intermittently for
.."\ < hours/days every couple of weeks? | am so over this. Zevil
1 a
m ComcastCares Follow
]

kendallina Is it just the wireless
connection? Can you plug directly into the
modem and see if hard wire works?

(7}

Figure 6: Comcast responding to a tweet in 9 minutes

Figure 6 illustrates the problem. Comcast is disciplined to respond to the customer complaint in
the public forum of Twitter, but perhaps would prefer such interactions to be conducted in private.

Facebook announced the launch of Pages in 2007, which permitted companies to see the network
‘reach’ of customers who chose to engage, but also came with quasi-public communication between
brand and customer. One way to view that public communication is, again, to bind the hands of the
‘outsider’ in the face of differentiated network data.

These gray areas and conflicting concerns are characteristic of the structure of popular online com-
munication platforms in general. In some sense all such platforms present hybrid cases that do not fit
neatly into either anonymous or non-anonymous designations.

Take the case of Twitter. Communication is varied and layered: all communication is in theory
public, but in practice swamped by vast volume unless sought out. Direct messages were strictly private
between pre-existing connections until the change described above, and ‘mentions’ are something of a
hybrid. In any case, all can be short-circuited by a user who chooses to make their account private.

Facebook, LinkedIn, and Instagram, similarly, have increasingly offered fine controls to users that
allow them to tailor the visibility of individual communications, rather than tie them to the same
communication network for all purposes. This discretion is designed in part to address privacy concerns,

and the agency of insiders to choose their network on the fly is one direction in which the model we
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have analyzed here could be extended.

A novel concern raised by the ambiguous value of non-anonymous network data is what the ef-
fect could be on the contracting problem between network operators and outsiders. In this paper we
have explored one possible source of ambiguity, but privacy concerns and other consumer responses,
for example, may also have related implications. How can a network operator monetize its detailed
information on people’s connections if there is a possibility that the knowledge might be toxic?

It's true that simply knowing whether the non-anonymous data is favorable or not doesn’t change
anything for the outsider relative to the case in which it had summary statistics only. The outsider
simply cannot act on what it doesn’t know. But how can the outsider trust that the operator won't
try to cash in on them when it's unfavorable? The trust game is passed one step down the line to
the relationship between the outsider and the operator, but now it is potentially complicated by the
possibility of contingent contracts.

Finally, returning to the issue of privacy concerns, we may place our analysis alongside prior findings
on the interplay between consumers’ control over data on their characteristics and relationships on one
hand, and commercial use of that data on the other hand. A common theme in previous work in this
area is the tension between the ability of organizations to improve their product offerings through the
use of consumer data, and consumer distaste for feeling violated by the use of this data (Miller and
Tucker, 2009, Goldfarb and Tucker, 2011, Tucker, 2014, Campbell et al., 2015).

The ability of social networks to provide community protection is an additional factor that may
contribute to regulatory concerns in this area. It suggests one sense in which the availability and trade
of data on the relationships and lines of communication among consumers across various platforms
is not an unambiguous good for trade. Local and aggregate trust in long-term relationships may be
eroded by the publicness of network data in unexpected ways. The evolving tools employed and offered
by modern communication platforms reflects a searching in the dark for the appropriate balance among

many competing concerns.

4 Concluding comments

In general, what value data on communication networks has for interested parties and for society is a

difficult question to answer. Here we have explored one sense in which recursion and non-linearities
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can complicate valuation, but there are certainly others. What we can say for sure is that the problem
is very different in nature to placing a value on other kinds of demographic data that allow for a
better match of product to tastes. The importance of information and communication in an array of
economic models and settings makes data on communication networks a unique case rich with potential

unintended consequences.
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